Design Failure Modes and Effects Analysis (DFMEA)

Sue L. Niezgoda, Ph.D., P.E.

Sustaining Colorado Watersheds Conference
October 2012

- Created by Aerospace Industry 1960's
- Widely used in:
 - Automotive industry
 - Marine industry
 - Nuclear safety
- Most recently used in:
 - Reliability engineering
 - Water Resources engineering
 - (Johnson and Brown 2001, Johnson and Niezgoda 2004, Niezgoda and Johnson 2007)

- > FMEA provides a systematic process to:
 - Identify and evaluate
 - potential failure modes
 - potential causes of the failure mode
 - Identify and quantify the impact of potential failures
 - Identify and prioritize actions to reduce or eliminate the potential failure
 - Implement action plan based on assigned responsibilities and completion dates
 - Document the associated activities

- Purpose and Benefit:
 - Cost effective tool for maximizing and documenting the collective knowledge, experience, and insights of the professional community
 - Format for communication across disciplines
 - Provides logical, sequential steps for specifying areas of concern

- > FMEA Failure Mode and Effects Analysis
 - qualitative minimize failures, determine impact
- ➤ DFMEA FMEA in design stage
 - Design deficiencies identified <u>before</u> construction
 - Evolutionary
- > Goal
 - Increase robustness of a design by systematically listing its potential failure modes
- > Analyze all design components in terms of:
 - the consequence of failure (C)
 - the likelihood of a component failure (O)
 - the level of difficulty required to detect failure (D)

DFMEA (Summary) Start DFMEA **Calculate RPN** Values (C x O x D) **Identify Team Members Identify Occurrence (O),** Yes Consequence (C), and **Detection (D) Ratings** Acceptable?? **Identify Initial Design** Standards, Components and No **Functions of the Design Implement Corrective Actions -Design Controls, Inspections, Identify Potential Failure Modes Testing, Monitoring, Component** for Each Design Component **Modification Identify Potential Failure Mode Recalculate RPN Based Causes and Effects** on Corrective Actions Yes No Complete for all Implement Final, Components? **Lowest Risk Design**

DFMEA Application

- Establish C, O, D fuzzy tables prior to DFMEA
 - Adapted from AIAG (1995) automotive industry tables
 - handout
 - Ranking larger numbers → severe consequence, more likely to occur, least likely to detect

Co .				nce
	Detection Level	Likelihood of Detection by Applying the Design Control	Detection Rating	
	Absolute Uncertainty	Design control will not and/or cannot detect or prevent a potential cause/mechanism and subsequent failure mode; or there is no design control available.	10	
	Remote	Remote chance the design control will detect or prevent a potential cause/mechanism and subsequent failure mode.	8	
_	Low	Low chance the design control will detect or prevent a potential cause/mechanism and subsequent failure mode.	6	
	Moderately High	Moderately high chance the design control will detect or prevent a potential cause/mechanism and subsequent failure mode.	4	
1	Very High or Almost Certain	Design controls will almost certainly detect or prevent a potential cause/mechanism and subsequent failure mode.	2	

DFMEA Components and Functions

- Describe what the component is designed to do – what is its intended function?
 - Include information regarding the environment in which the component operates
- > List all functions
 - Reduce bank erosion, improve habitat, provide organic matter, provide grade control
- Remember to consider unintended functions

Defining Failure -

- Focuses risk analysis on priority issues
- Fosters good communication
- Provides a common understanding

Considerations

- Concise and easily understandable
- Must address only one topic
- Approved by someone in authority

- Overall Design Failure: When a stream no longer functions as intended due to instability. This can happen if the incoming sediment is greater than the outgoing or vice versa.
- Component Failure: When an element no longer functions as intended and either induces stream instability or causes any unintended change upstream or downstream. A design component can fail both structurally and/or functionally.
- Structural Failure: This refers to a collapse of the physical system or components of the system sufficient to prevent fulfillment of the design objectives (Brown & Johnson, 2001).
- Functional Failure: This implies that the project objectives cannot be realized due to the ineffectiveness of the design, although the structure or form may be intact and in place (Brown & Johnson, 2001).

DFMEA Potential Failure Mode(s)

Definition

 the manner in which a component could potentially fail to meet design intent

Ask yourself:

 "How could this design fail to meet the project objectives?"

> Remember to consider:

- absolute failure
- partial failure
- overall function
- degraded function
- unintended function

Consider Potential Failure Modes Under

- Operating Conditions
 - hot and cold
 - wet and dry
 - high flow and low flow
- Usage
 - Above average life cycle
 - Below average life cycle
 - Harsh environment

- Incorrect service operations
 - Can the wrong materials be substituted inadvertently?
 - Is the component going to be well maintained?
 - Is the component difficult to construct?

DFMEA Potential Failure Modes

> Rock Structures

- Undermining and collapse
- Ineffective Angles
- Burial by incoming sediment
- Unintended movement/dislocation

> Gabions

- Unintended movement/dislocation
- Unintended erosion/scour/undermining
- Distortion or breakage of basket

Potential Effect(s) of Failure

- Definition
 - Effects of failure mode on function of system and other components
- Types of Effects
 - Loss of life
 - Economic loss
 - Environmental damage
 - Public scrutiny
- Ask yourself- "What would be the result of this failure?" or "If the failure occurs then what are the consequences"
 - Result on other components?
 - Result on entire system?
- State clearly if the function could impact <u>safety</u> or <u>noncompliance to regulations</u>

Effect(s) of Failure

> High Consequence

- Ineffective angle of W-weir placed upstream of bridge pier
- Misdirection of flow into pier, excessive scour, and potential bridge collapse

Medium Consequence

- Undermining and displacement of Cross Rock Vane
- Provide inadequate grade control and head cut upstream

Low Consequence

- Bank erosion around rock vane
- Moderate bank erosion and sediment deposition downstream

Consequence Rating - Severity

> Definition

- Assessment of seriousness of effect(s) of potential failure mode(s) on system, other components, or stakeholders
- Severity applies to level of effects
 - Multiple effects, rate each effect and select the highest rating

Consequence	Outcomes of Failure				
Category	Loss of Life	Economic Impact	Environmental Impact	Public Scrutiny	Rating
Critical (Extreme)	Probable	Significant replacement cost relative to project budget; replacement of a significant portion of the project; failure of hydraulic or engineering infrastructure; loss of service provided by infrastructure and/or public utilities; significant public or private property damage	Catastrophic impact on habitat and water quality (irreversible and large)	Savara	10
High	Possible	High replacement cost relative to project budget; replacement of a significant portion of the project; failure of hydraulic or engineering infrastructure; high public or private property damage	Significant impact on habitat and water quality (irreversible or large, reversible)	High	8
Moderate	None	Moderate replacement cost relative to project budget; replacement of supporting of integrated enhancement measures required; moderate public and/or private property damage		Moderate	6
Low	None	Minor replacement cost relative to project budget; adjustment of supporting and integrated enhancement measures required; very little damage to public and/or private property		Low	4
Negligible	None	Negligible replacement cost relative to project budget; susceptibility to failure of other measures is not increased; negligible impacts to public and/or private property	No measurable impact on habitat and water quality	None	2

Consequence Rating - Severity

- > High Consequence
 - Ineffective Angle of W-weir Placed upstream of Bridge Pier
 - Misdirection of flow into pier, excessive scour, and potential bridge collapse
 - Consequence (Severity) Rating = 8 -10
- Medium Consequence
 - Undermining and displacement of Cross Rock Vane
 - Provide inadequate grade control, head cut moves upstream
 - Consequence (Severity) Rating = 4 7
- Low Consequence
 - Erosion around rock vane
 - Moderate bank erosion, some sediment deposition downstream
 - Consequence (Severity) Rating = 1-3

Potential Cause(s)/Mechanism(s) of Failure

- Definition
 - Indication of a design weakness, the consequence of which is the failure mode
- List <u>every conceivable failure cause</u> or mechanism
 - Concisely and completely
 - Efforts can be aimed at pertinent causes

Cause(s) of Failure

- > High Consequence
 - Ineffective Angle of W-weir Placed upstream of Bridge Pier
 - Cause Improper design, lack of design guidance, not enough study to verify that angles were appropriate
- Medium Consequence
 - Displacement of rocks in Cross Rock Vane
 - Cause improper sizing of rock to handle large flows
- Low Consequence
 - Erosion around rock vane
 - Cause Improper design placement or alignment

Occurrence

Definition

likelihood that a specific cause/mechanism will occur

Rating

- Be consistent when assigning occurrence
- Removing or controlling the cause or mechanism though a design change is only way to reduce the occurrence rating
- Based on experience, judgment, literature, past studies, lessons learned, research, etc.

Occurrence Likelihood	Occurrence Rating
Almost certainly probable; has previously occurred frequently	10
Probable; has previously occurred occasionally	8
Possible; has previously occurred rarely	6
Remotely possible; similar events may have occurred previously	4
Almost impossible; has never occurred previously	2

Likelihood of Occurrence

- > High Consequence
 - Ineffective angle of W-weir placed upstream of bridge pier
 - Cause Improper design, lack of design guidance, not enough study to verify that angles were appropriate
 - Rating High 8-10
 - not much guidance available on this type of design
- > Medium Consequence
 - Displacement of rocks in Cross Rock Vane
 - Cause improper sizing of rock to handle large flows
 - Rating Medium 6-8
 - size based on riprap guidelines and may not adequately represent incipient motion, or undersize for small events

Current Design Controls

Definition

Activities which will assure design adequacy for failure cause/mechanism

Confidence

- Current design controls will detect cause/failure mode prior to construction, and/or prevent cause from occurring
- If more than one control, rate each and select lowest rating

Types of Controls

- 1. Prevention from occurring or reduction of rate
- 2. Detect cause mechanism and lead to corrective actions
- 3. Detect the failure mode, leading to corrective actions

Current Design Controls

Types of Controls:

- Engineering specifications (P) preventive control
- Design Guidelines (P) preventative control
- Historical data (P) preventive control
- Functional testing (D) detective control

Rating

• Detection is the value assigned to each of the detective controls

Detection values of 1-2 must eliminate the potential for failures due to design

deficiency

Detection Level	Likelihood of Detection by Applying the Design Control	Detection Rating
	Design control will not and/or cannot detect or prevent a	
	potential cause/mechanism and subsequent failure mode; or	
Absolute Uncertainty	there is no design control available.	10
	Remote chance the design control will detect or prevent a	
Remote	potential cause/mechanism and subsequent failure mode.	8
	Low chance the design control will detect or prevent a	
Low	potential cause/mechanism and subsequent failure mode.	6
	Moderately high chance the design control will detect or	
	prevent a potential cause/mechanism and subsequent failure	
Moderately High	mode.	4
	Design controls will almost certainly detect or prevent a	
Very High or Almost Certain	potential cause/mechanism and subsequent failure mode.	2

Risk Priority Number(RPN)

- > For each component:
 - Rank each component risk → Consequence,
 Occurrence, & Detection
 - Calculate Risk Priority Number (RPN)
 - $C \times O \times D \rightarrow RPN$
- Compare RPNs
 - Qualitative value of relative risk
 - High RPNs → higher potential risk to project
 - RPNs provide justification for selection of a certain design alternative
 - Higher RPNs warrant recommended actions to reduce uncertainty and improve design

Recommended Actions

Definition

- Tasks recommended for purpose of reducing any or all ratings (C, O, and D)
- Critical components (high RPNs) should have recommended actions
 - Focus on design and directed toward mitigating or eliminating failure mode
- Examples of Recommended Actions
 - Review additional design guidelines, designed experiments, reliability testing, sediment transport analyses, etc.
 - Revise design and/or engineering specification

Action Results

Severity Rating

Unless the failure mode has been eliminated, severity should not change

Occurrence Rating

May or may not be lowered based upon results of actions

Detection Rating

May or may not be lowered based upon the results of actions

Additional Actions

 If severity, occurrence or detection ratings are not improved, additional recommended actions should be defined

Example Case Study

- Site Data Price Park Restoration (NC)
 - Urban watershed 28% impervious
 - $DA = 1 \text{ mi}^2 (2.6 \text{ km}^2)$
 - Strahler 2nd order stream
 - Rosgen G5/E5 with bedrock control
 - Located within an urban park
 - 1440 linear feet

Stream Condition

Aerial/Topo

 straight channel through farmland with few trees

Pre-restoration:

- Straight channel with very few trees in riparian corridor
- Mostly run with some lateral pools
- Mass wasting of banks

Picture 3. Undercut banks with no vegetation.

Project Goals

- Natural Channel Design Priority One
 - Create stable dimension, pattern, and profile
 - Reconnect stream with its floodplain
 - Improve aquatic habitat
 - Improve riparian habitat and bank stability
- Incorporate existing greenway into restoration

Design Components

Cross Section
Construction

- Meander Pattern Construction
- Rock Cross Vanes
- Root Wads
- Riparian Plantings

Natural Channel Design Validation (Design Control)

- Dimensionless ratios reference reaches
- Shear stress analysis for sediment entrainment

Shear Stress $\tau = \gamma RS$

 $T = 1.4 \text{ lb/ft}^2$

Shields curve -> 150 mm particle

Preconstruction $D_{50} = 0.7$ mm; $D_{84} = bedrock$

Initial DFMEA

Component	Potential Failure Mode(s)	Potential Effect(s) of Failure on Components	Potential Effect(s) of Failure on Whole System	С	Potential Cause(s)/ Mechanism(s) of Failure	0	Current Design Controls	D	RPN
Root Wads	Excessive scouring			4		8	Engineering judgment and past project experience	10	320
		None or minimal	Minimal	2	Insufficient design capacity	8	Incipient Motion Check	8	128
Rock Cross		Erosion around measures	Minimal, some sediment input	4	Improper design, placement, or alignment	8	Design guidelines structures	8	256
Vanes		Minimal, nearby measures less effective	Minimal, design may be less effective	4	Improper design	6	Design guidelines structures	6	144
		None or minimal	Minimal, cause less effective design	2	Improper rock sizing	8	Construct largest cost-effective rock	10	160

Initial DFMEA (Incipient Motion)

Component	Potential Failure Mode(s)	RPN	
	Burial by incoming sediment	128	
Rock Cross Vanes	Erosion of opposite (unlined) bank	256	
NOCK CIOSS Valles	Ineffective angles	144	
	Structure displacement	160	
Rootwads	Rootwads Excessive scouring		
	Rapid widening	320	
Cross Sectional Geometry Change	Excessive deposition (too wide)	384	
	Bed degradation (too narrow) and headcutting	256	
Meander	Rapid lateral or downstream meander migration	384	
Construction	Excessive deposition	512	

Example Application

- ➤ DFMEA Evolutionary
 - Implement corrective actions improve design, reduce uncertainty and risk
 - Price Park Example
 - Largest RPN's tend to be those components whose failure modes are related to sediment transport
 - What are some things that can be done to improve confidence in the design?
 - Implement reassess DFMEA
 - Result → lowest risk design

Additional Design Methods (Recommended Actions)

- SedimentTransport Capacityand SupplyAnalysis
 - Meyer-Peter Muller
- Alluvial ChannelModeling 20 yearsimulation
 - FLUVIAL 12

Sediment Transport C/S Analysis

- Actions Taken -Detection
 - Capacity and Supply Analysis
 - Additional Design Guidelines (HEC-23, MDE 2000, etc.)
 - Local Scour Analysis on Rock Lining
 - Bank Erosion Potential Analysis (BEHI)
 - Meander Migration Analysis (Chang 1992)

Sediment Capacity-Supply Analysis: Riffle #1

Sediment Capacity-Supply Analysis: Riffle #3

Predicted Channel Response

- Riffle #1: Sediment transport capacity exceeds supply; therefore, bed likely to degrade
- Riffle #3: Sediment capacity similar to supply; therefore, bed likely to be stable

Riffle #1 Cross Section

 Rip rap installed at end of construction due to bed incision As-built

> Five years later

Riffle #3 Cross Section

> As-built

Five years later section is stable but backwatered from beaver dam

Extended DFMEA (S-C Analysis)

			Actions Taken						
Comp.	Potential Failure Mode(s)	Recommended Action(s)	Cons	New C	Occ	New O	Det	New D	New RPN
(1)	(2)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Cross Sectional Geometry Change	Rapid widening	Bank stability analysis	None	8	None	6	Bank stability analysis	6	288
	Excessive deposition (wide)	Sediment transport supply/capacity analysis	None	6	None	6	Supply/capacity analysis	6	216
	Bed degradation (narrow) headcutting	Sediment transport supply/capacity analysis	None	6	Re- designed geometry capacity = supply	6	supply/capacity analysis	6	216

Extended DFMEA (S-C Analysis)

Component	Potential Failure Mode(s)	Initial RPN	New RPN
(1)	(2)	(3)	(11)
	Burial by incoming sediment	128	72
Rock Cross Vanes	Erosion of opposite (unlined) bank	256	96
HOCK CIUSS Valles	Ineffective angles	144	96
	Structure displacement	160	64
Rootwads	Excessive scouring	320	32
	Rapid widening	512	288
Cross Sectional Geometry Change	Excessive deposition (too wide)	<i>384</i>	216
	Bed degradation (too narrow) and headcutting	384	216
Meander Construction	Rapid lateral or downstream meander migration	512	128
	Excessive deposition	384	96

Alluvial Channel Modeling

- Actions Taken Detection
 - Alluvial Channel Modeling FLUVIAL-12
 - Supplemental Design Guidelines (HEC-23, MDE 2000, etc.)
 - Local Scour Analysis on Rock Lining
 - Bank Erosion Potential Analysis (BEHI)
 - Meander Migration Analysis (Chang 1992)

Generalized Computer Program

FLUVIAL-12
Mathematical Model for Erodible Channels

Users Manual

Prepared by

Howard H. Chang, Ph.D., P.E. San Diego, California June 1998 Updated Version

Alluvial Channel Modeling

Cross Section #1 - 20-Year Simulation Without Rigid Structures

Alluvial Channel Modeling

> Actions Taken:

- Consequence:
 - Reduced Rootwads for Habitat Only
 - Reduced In-stream Structures in Design
- Occurrence:
 - Reduced In-stream Structures in Design
 - Redesign Meander Geometry (less sinuous)
 - Redesigned Geometry Balance Sediment Transport
 - Sized Rock for Larger Flood Events
 - Additional Bank Protection

Extended DFMEA (ACM)

Component	Potential Failure Mode(s)	Initial RPN	New RPN
(1)	(2)	(3)	(11)
	Burial by incoming sediment	128	<i>32</i>
Dook Cross Vance	Erosion of opposite (unlined) bank	256	48
Rock Cross Vanes -	Ineffective angles	160	96
	Structure displacement	320	64
Rootwads	Excessive scouring	512	<i>32</i>
	Rapid widening	384	128
Cross Sectional Geometry	Excessive deposition (too wide)	384	96
Change -	Bed degradation (too narrow) and headcutting	512	96
Meander Construction	Rapid lateral or downstream meander migration	384	32
	Excessive deposition	128	24

Relative Risk Comparison (DFMEA)

Component	Potential Failure Mode(s)	Initial RPN	S-C RPN	ACM RPN
	Burial by incoming sediment	128	72	32
Rock Cross	Erosion of opposite (unlined) bank	256	96	48
Vanes	Ineffective angles	160	96	96
	Structure displacement	320	64	64
Rootwads	Excessive scouring	512	<i>32</i>	32
	Rapid widening	384	288	128
Cross Sectional	Excessive deposition (too wide)	384	216	96
Geometry Change	Bed degradation (too narrow) and headcutting	512	216	96
Meander Construction	Rapid lateral or downstream meander migration	384	128	32
	Excessive deposition	128	96	24

Summary

- > DFMEA simple way to qualitatively reduce risk
 - 1. Select and apply a design method;
 - 2. Develop consequence, occurrence, and detection rating tables
 - 3. Review the design to identify each component;
 - 4. Brainstorm potential failure modes for each component;
 - 5. List potential effects of failure on individual components and the system as a whole;
 - 6. Assign consequence, occurrence, and detection rankings;
 - 7. Calculate the RPN;
 - 8. Develop an action plan by examining new design methods or detection methods;
 - 9. Take action by implementing a new design method or additional detection methods; and
 - 10 Reevaluate the potential failures once improvements are made and adjust RPN values.

Questions????

COURAGE

Do one brave thing today... then run like hell.